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LLM4GKID: A Multimodal Large Language
Model-driven Framework for Ghost Kitchen

Identification
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Abstract—The proliferation of ghost kitchens (i.e., delivery-
only restaurants without physical storefronts) poses significant
challenges for urban food system monitoring and regulatory over-
sight. These establishments maintain digital visibility on delivery
platforms while eluding visibility in the physical public realm,
creating information asymmetries that compromise transparency
and consumer protection. This work presents LLM4GKID, a
comprehensive approach for detecting ghost kitchens by leverag-
ing the sensing capability of large language models to match Point
of Interest records across platforms. The methodology integrates
multiple information sources through a staged pipeline: geo-
graphic filtering to identify spatial candidates, language model-
based semantic similarity assessment, visual consistency analysis
of establishment imagery, and machine learning classification.
Central to our contribution is the alignment failure detec-
tion mechanism, which systematically identifies delivery-only
establishments lacking corresponding entries in crowdsourced
review databases. Evaluation on a manually annotated dataset
of restaurant POI pairs from Shenzhen, China, demonstrates
substantial performance improvements over existing methods
adapted for our task. The progressive filtering strategy signifi-
cantly reduces computational complexity while maintaining high
recall by conservatively selecting candidates. Our framework
addresses fundamental challenges in category-specific business
model detection, where traditional POI conflation approaches
fail due to sparse category features and the spatial autocor-
relation implied by Tobler’s law. LLM4GKID overcomes these
limitations through the integration of multimodal evidence and
negative matching logic, enabling the accurate identification of
establishments with asymmetric digital presence patterns. The
framework allows downstream research in food access equity,
regulatory compliance monitoring, and broader applications to
other business models with asymmetric digital footprints. The
source codes of LLM4GKID are available at https://github.com/
weipengdeng/LLM4GKID.

Index Terms—Ghost Kitchen, Large Language Model, POI
conflation, Points of Interest, Multi-source Data Fusion, Platform
Urbanism
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I. INTRODUCTION

The rapid expansion of online food delivery platforms
has fundamentally reshaped urban foodscapes, facilitating the
emergence of ghost kitchens (also known as dark kitchens and
cloud kitchens) [1]. These delivery-only commercial cooking
facilities operate exclusively through digital platforms with-
out traditional storefronts [2], representing a paradigmatic
shift from conventional restaurant models. Unlike traditional
restaurants that rely on physical presence for brand visibil-
ity, ghost kitchens maintain complete operational invisibility
while serving consumers through delivery apps [3], creating a
parallel food economy that operates largely outside traditional
regulatory frameworks.

This invisibility presents unprecedented challenges for food
safety oversight, consumer protection, and urban governance.
Traditional regulatory frameworks assume commercial food
establishments operate within visible, accessible premises
where health inspectors can conduct routine evaluations [4].
However, ghost kitchens fundamentally disrupt these assump-
tions by operating in concealed locations and maintaining
no public-facing facilities for direct consumer interaction [5].
The proliferation of ghost kitchens has outpaced regulatory
adaptation across major metropolitan areas worldwide, with
studies indicating that 27% of restaurants on food delivery
platforms in Brazil were classified as ghost kitchens [6]. Yet,
they remain largely invisible in regulatory monitoring systems
[3].

Deliberate obfuscation strategies and fundamental geo-
graphic principles together intensify the difficulty of detecting
ghost kitchens. These establishments often operate in discreet
or low-visibility settings to reduce costs and avoid regulatory
scrutiny [2, 5], yet they still cluster with traditional restaurants
because they benefit from similar locational advantages [7].
This spatial co-location is further shaped by Tobler’s first
law of geography, which states that “near things are more
related than distant things.” As a result, ghost kitchens and
conventional restaurants often display highly similar spatial
patterns in coordinate space despite having distinct operating
models, making automated identification substantially more
challenging [8].

Furthermore, the heterogeneity of data sources across food
delivery platforms, mapping services, and business directories
creates semantic inconsistencies that traditional POI (Point of
Interest) conflation methods struggle to address [9, 10, 11,
12]. Ghost kitchens may appear as multiple distinct entities
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on delivery platforms, while operating from a single location,
or may be absent entirely from traditional business directories,
creating systematic information asymmetries that compromise
transparency and fair competition.

Large Language Models (LLMs) offer unprecedented ca-
pabilities for addressing these complex detection challenges.
Unlike traditional semantic matching approaches that rely on
token-based similarity or fixed embeddings, LLMs possess
vast world knowledge and sophisticated contextual reasoning
abilities that can interpret subtle naming variations, brand
aliases, and creative obfuscation strategies employed by ghost
kitchen operators. Recent advances in LLM applications to
spatial data science demonstrate their potential for geographic
reasoning and entity resolution tasks [10], yet their application
to category-specific business model detection remains largely
unexplored. The key insight is that LLMs can effectively
leverage multimodal evidence integration and negative match-
ing logic to identify establishments with asymmetric digital
presence patterns—precisely the characteristic that defines
ghost kitchens.

To address these multifaceted challenges, we introduce
LLM4GKID, a comprehensive framework that leverages
LLM-powered alignment failure detection to systematically
identify ghost kitchens by matching POI records between
online delivery platforms and crowdsourced review platforms.
Unlike traditional POI conflation methods that focus on
successful matches, our approach employs a cost-effective
sequential pipeline that combines geographic filtering, LLM-
assisted semantic similarity assessment to capture nuanced
restaurant naming patterns and variations, computer vision
analysis of establishment imagery, and supervised machine
learning classification. Additionally, through cross-platform
validation, LLM4GKID overcomes deliberate misinformation
on a single platform (e.g., false “dine-in available” labels), en-
suring robust detection. The key innovation lies in recognizing
that ghost kitchens can be identified through their systematic
absence from crowdsourced review platforms, thereby trans-
forming the detection problem into a negative matching task
where LLMs excel at disambiguating complex semantic rela-
tionships. We make three key contributions to computational
social systems and urban analytics:
• Technical Innovation: We introduce LLM4GKID, a novel

cross-platform POI conflation framework that integrates
LLM-driven semantic understanding with spatial proxim-
ity filtering, logo-based visual consistency assessment, and
XGBoost-driven classification to achieve superior accuracy
(F1: 92%) in ghost kitchen identification compared to ex-
isting approaches.

• Dataset Contribution: We develop and publicly release
a comprehensive benchmark dataset of manually validated
restaurant POI pairs, establishing the first standardized
testbed for cross-platform restaurant conflation and ghost
kitchen detection research.

• Societal Impact: We demonstrate LLM4GKID’s practical
utility in uncovering hidden ghost kitchens within real-world
commercial ecosystems, providing policymakers and urban
planners with an LLM-powered scalable tool for monitoring
the digital foodscape, ensuring consumer transparency, and

informing strategic decisions around urban culinary infras-
tructure development.

II. RELATED WORK

While digital platform economies have attracted increas-
ing scholarly attention, the specific challenge of ghost
kitchen identification remains relatively underexplored. Ghost
kitchens, which operate exclusively through delivery while
often presenting themselves as dine-in restaurants, embody a
new urban phenomenon on driven by the integration of digital
platforms, logistics networks, and physical retail systems [4].
Existing studies on platform economies have primarily focus
on topics such as fraud detection, product classification, and
delivery capacity predictions rather than store channel detec-
tion [13], yet few have directly addressed the detection and
mapping of ghost kitchens as distinct entity.

Early research has relied on manual inspection, keyword-
based filtering, and street-view imagery to detect ghost
kitchens. These approaches provide useful clues but are diffi-
cult to scale, especially in areas lacking timely or comprehen-
sive street-view coverage. Given the inherent data inconsis-
tencies of ghost kitchen operations, multi-source data fusion
has emerged as a more effective strategy, with POI conflation
serving as the foundation for aligning cross-platform records
[14]. Although recent advances in LLMs have improved
general place alignment [15], existing methods still lack the
negative matching logic required to detect these establish-
ments. To address these challenges, we review prior studies
in three domains: (1) existing approaches for ghost kitchen
identification, (2) POI conflation and multimodal integration,
and (3) semantic matching using traditional encoders and large
language models.

A. Existing Approaches for Ghost Kitchen Identification

Research directly addressing ghost kitchen identification
remains limited but has made valuable progress across several
disciplines. Drawing on established definitions [1, 16], early
studies identified ghost kitchens through manual inspection of
platform listings and street-view verification [6, 17], providing
the first systematic foundations for mapping delivery-only
restaurants. A second stream of research uses keyword- and
metadata-based filtering, identifying restaurants through de-
scriptors like “Deliveroo Editions” or service-mode inconsis-
tencies (e.g., dine-in vs. delivery-only) [18]. These approaches
facilitate more efficient screening, but they depend on self-
reported attributes and are easily misled by intentionally
deceptive information [4], posing significant challenges for
accurate, large-scale identification. Despite these contribu-
tions, existing methods remain largely heuristic and platform-
dependent, limiting their ability to detect ghost kitchen effec-
tively. These limitations highlight the need for a multimodal,
multi-source framework that integrates spatial, semantic, and
even visual signals to more robustly identify and verify ghost
kitchens across digital platforms.
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B. POI Conflation and Multimodal Integration

POI conflation offers a more systematic pathway for ghost
kitchen identification by aligning inconsistent cross-platform
records. These approaches have evolved from rule-based meth-
ods to sophisticated machine learning techniques, yet remain
limited in multimodal integration. Early approaches relied on
deterministic rules that combined name similarity and spatial
distance thresholds [19], using either fixed or adaptive weight-
ing schemes [20, 21]. While straightforward, these methods
struggle with parameter generalization across datasets [14].
Supervised learning approaches compute multiple similarity
features for candidate pairs, using classifiers to learn optimal
combinations [22]. Traditional methods employed Logistic
Regression and Random Forests [23, 24], while recent ap-
proaches leverage deep learning techniques including BERT-
based semantic embeddings [25], knowledge graph [26], multi-
view encoders [27], and sequence inference models [28].
These achieve high accuracies (> 90%) but require substantial
labeled training data [29, 30]. However, most research fo-
cuses primarily on textual and spatial features. Geographic
distance serves as a universal filtering for scalability [27],
while semantic approaches use string metrics, preprocessing,
and embedding techniques [31, 32]. Some studies incorporate
user-generated content [24, 8], but visual cues remain virtu-
ally absent despite digital platforms containing informative
imagery [14]. This multimodal gap motivates our approach,
which integrates multi-source spatial, semantic, and visual
signals to detect ghost kitchens.

C. Semantic Matching: Large Language Models vs. Tradi-
tional Encoders

Another emerging opportunity is the application of large
language models (LLMs) to content detection and urban sens-
ing [33, 34]. Traditionally, the “semantic” aspect of POI con-
flation has been handled by relatively localized text processing,
specifically comparing names or descriptions using token-
based similarity or moderate-sized pre-trained embeddings.
For example, studies up to 2022 often used encoders like
Word2Vec or BERT to vectorize POI names and addresses
[25], which already proved more robust than raw string match-
ing. Yet, these models are limited to the information within the
input text (e.g., the two names being compared) and their fixed,
pre-trained knowledge. In contrast, generative LLMs contain a
vast breadth of world knowledge and exhibit strong contextual
reasoning abilities. Recent work in spatial data science has
begun to explore LLMs. For instance, GeoGPT and GeoLLM
use prompt-based queries on LLMs to answer geographic
questions, and POI-Enhancer leverages an LLM to enrich POI
feature representations with richer textual knowledge [35].
However, using LLMs for fine-grained POI conflation is still in
its infancy. One challenge is how to extract useful, contextual
semantic features from an LLM without heavy cost (e.g.,
an LLM could, in principle, infer that “Sunshine Burgers”
and “Sunshine Diner” at the same address likely refer to the
same business, but operationalizing this insight is nontriv-
ial). Early studies on general entity resolution suggest that
while prompting large models can yield impressive accuracy

[36], smaller domain-tuned models often perform comparably.
For example, [37] conducted a comprehensive evaluation of
entity matching techniques and found that fine-tuned small
language models (e.g., a BERT-based classifier) can achieve
on-par performance with prompted LLMs, at a fraction of
the deployment cost. This finding tempers the assumption that
“bigger is always better”. In many cases, carefully engineered
local models or task-specific encoders can rival an off-the-shelf
LLM on matching tasks. Nonetheless, LLMs bring certain
advantages that remain underexploited in POI alignment. They
can interpret context in free-form text (e.g., understanding that
two restaurants’ descriptions both mention the same signature
dishes in their names). They can even resolve obscure name
variations using real-world knowledge [36, 37]. However,
limited work has explored LLM reasoning in POI conflation
for scenarios involving entities that deliberately obscure their
operational characteristics. LLM4GKID addresses this gap by
leveraging LLM-level semantic and visual sensing capability
to detect subtle inconsistencies and creative aliasing strategies
that traditional approaches would overlook, enabling more
robust identification of deliberately deceptive operational mod-
els.

III. METHODOLOGY

This section introduces LLM4GKID, a multimodal frame-
work for aligning restaurant POIs across heterogeneous online
and offline platforms, to identify ghost kitchens—delivery-only
establishments lacking physical storefronts. LLM4GKID inte-
grates spatial, semantic, and visual information from multiple
data sources in a stepwise manner (Figure 1).

A. Overview

The core objective of LLM4GKID is to identify ghost
kitchens by performing multimodal alignment of POIs across
heterogeneous platforms. Specifically, we distinguish between
two major types of sources: Online Delivery Platforms
(ODPs), which provide digital listings of restaurants available
for online ordering (e.g., food delivery platforms), and Crowd-
sourced Review Platform (CRP), which document venues with
verified physical locations through user-generated reviews,
check-ins, or on-site photos.

Formally, we consider two sets of POIs: one from an
ODP O = {oi}Ni=1, and one from a CRP P = {pj}Mj=1.
Each POI x ∈ O ∪ P is described by a multimodal tuple:
x = (xgeo, xsmt, xvis), where xgeo ∈ R2 denotes geographic
coordinates (latitude and longitude), xsmt represents semantic
attributes in textual form (e.g., name, address), and xvis

denotes associated visual information (e.g., storefront or logo
images), if available. Our task is to determine whether a given
ODP POI oi ∈ O and a CRP POI pj ∈ P refer to the same
real-world restaurant entity. To this end, we define a binary
matching function:

f(oi, pj)→ {0, 1}, (1)

where f(oi, pj) = 1 indicates a match, and f(oi, pj) = 0
indicates that the two POIs correspond to different entities.
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Fig. 1: The Architecture of the LLM4GKID Approach

To learn this function, we optimize a parameterized model
fθ that minimizes the empirical risk over a labeled training set
D = {(oi, pj , yij)}, where yij ∈ {0, 1} denotes the ground-
truth alignment label:

min
θ
L(θ) =

∑
(oi,pj ,yij)∈D

ℓ
(
fθ(oi, pj), yij

)
, (2)

where ℓ(·, ·) is a suitable binary classification loss function,
such as binary cross-entropy. The model fθ jointly encodes
the spatial, semantic, and visual features of POI pairs to infer
their alignment likelihood.

The key insight of LLM4GKID is that ghost kitchens can be
inferred from alignment failure. Drawing from the definition
of ghost kitchens, restaurants that operate solely via online
delivery without public-facing physical venues for dine-in
services [1, 16], we identify such entities based on their
absence from CRP datasets. Specifically, an ODP POI oi ∈ O
is classified as a ghost kitchen candidate if it fails to align
with any CRP POI:

f(oi, pj) = 0 for all pj ∈ P. (3)

This formulation embeds ghost kitchen detection directly
within the alignment framework. Rather than requiring a
separate detection module, the absence of a match serves as
implicit evidence of digital-only existence. The strength of
this approach lies in its negative reasoning: ghost kitchens are
identified not by what they explicitly possess, but by what they
systematically lack, i.e., user-verified physical presence across
crowdsourced review platforms.

As shown in Figure 1, the LLM4GKID framework consists
of three sequential components, each leveraging a different
modality to improve alignment accuracy. The pipeline begins
with spatial filtering, which efficiently narrows down the
offline candidate set for each online POI using geographic
distance thresholds. Next, we compute semantic similarity
using language models to handle name variations and address
inconsistencies. Visual consistency is then assessed via vision-
language models (VLMs) based on storefront or logo imagery,
providing an additional signal where available. Finally, these
multimodal features are fused through supervised learning
that outputs the final alignment decision. This stepwise de-
sign ensures cost-effectiveness by prioritizing lightweight fil-
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ters before invoking more computationally expensive models,
while also enabling robust matching through complementary
evidence sources. In the following subsections, we provide a
detailed description of each component.

B. Spatial Filtering and Candidate Generation

To efficiently reduce the alignment search space,
LLM4GKID begins with spatial filtering based on geographic
proximity. For each online POI oi ∈ O, we identify a
candidate set of offline POIs Ci ⊆ P consisting of those
within a fixed radius τs, i.e.,

Ci = {pj ∈ P | h(ogeoi , pgeoj ) ≤ τs}, (4)

where h(·, ·) denotes the haversine distance between two geo-
graphic coordinates. This spatial threshold τs is chosen based
on domain knowledge and prior work in POI alignment [38],
typically set between 100 and 200 meters to balance precision
and recall. To efficiently compute all pairwise distances, we
employ a BallTree-based nearest-neighbor search. It yields a
reduced candidate set: C =

⋃N
i=1{(oi, pj) | pj ∈ Ci} of at most

k spatially nearest neighbors per oi, i.e., |C| ≪ |O| × |P|.
This traditional spatial filtering step, also called blocking

[27], serves as a lightweight and cost-effective preprocessing
module. It eliminates implausible matches and drastically
reduces the number of pairwise comparisons required in
subsequent stages, which involve higher-complexity semantic
and visual feature extraction. Importantly, it ensures that
only geographically plausible POI pairs are passed to the
multimodal alignment pipeline, thereby maintaining alignment
accuracy while minimizing computational demand.

C. Semantic Similarity via Language Models

After spatial filtering, we assess the semantic similarity
between each ODP-CRP POI pair in the candidate set C to
refine alignment plausibility. Each POI x ∈ O∪P is associated
with semantic attributes in textual form, which are used to
evaluate the degree of semantic correspondence.

We first initialize a large language model (LLM) fLLM
with a fixed system prompt that encodes our matching criteria
in a task-specific manner. Then, for each candidate pair
(oi, pj) ∈ C we send only a lightweight user prompt, thereby
minimizing token usage, and involve the model to compute
a normalized similarity score via our prompt-base inference
mechanism: sLLM(oi, pj) ∈ [0, 100].

In the actual implementation, only the candidates with the
highest semantic similarity scores above τm would be retained
in a refined candidate set C′ ⊆ C. To maintain high recall and
avoid false negatives that could hinder ghost kitchen detec-
tion, we adopt a conservative filtering strategy that prioritizes
comprehensiveness over precision at this stage. While this
approach still achieves an approximately over 90% reduction
in the refined candidate set compared to the initial spatial
filtering results, it deliberately retains pairs with ambiguous or
borderline scores to ensure potentially valid matches are not
prematurely discarded. This conservative threshold selection
recognizes that false negatives at the filtering stage cannot be

recovered by downstream classification, making recall preser-
vation critical for reliable ghost kitchen identification. As a
result, C′ may include both accurate matches and semantically
similar but incorrect pairs (“pseudo-matches”), which are
intentionally preserved for final adjudication by the supervised
classifier rather than being eliminated through aggressive early
filtering.

For all pairs in C′, we compute dense similarity features
using a language model encoder. Let fLMEnc(·) denote a
shared text encoder applied to the semantic fields of oi
and pj , resulting in vector representations vi and vj . The
cosine similarity then gives the embedding-based similarity:
sLMEnc(oi, pj) = cos (vi,vj) . The final semantic similarity
features used for fusion are:

{
sLLM(oi, pj), s

LMEnc(oi, pj)
}
.

These signals complement spatial and visual information, cap-
turing subtle semantic variations such as brand abbreviations,
semantics, and descriptive modifiers that frequently occur in
real-world POI data.

This two-stage design, consisting of high-level filtering
via SOTA LLMs and dense similarity scoring via language
model encoders, enables both efficient pruning and semantic
sensitivity. It helps preserve ambiguous yet potentially signifi-
cant pairs for downstream classification, ultimately supporting
robust ghost kitchen identification through alignment-based
reasoning. In our implementation, we instantiate fLMEnc using
a pre-trained BERT model and apply it to both name and
address fields.

D. Visual Consistency via Vision-Language Models
The final modality in LLM4GKID evaluates visual consis-

tency between POI pairs using VLMs. This step leverages
visual signals such as storefront photos, brand logos, or
representative dishes to identify latent correspondences not
captured by spatial or textual information. Due to the relatively
high computational cost of VLM inference, visual matching
is applied only to candidate pairs C′ that have passed prior
spatial and semantic filtering.

Let xvis denote the visual content associated with a POI
x, which may include one or more images. For each pair
(oi, pj) ∈ C′, we define a vision-language alignment function:

(vbin, ecode) = fVLM(ovisi , pvisj ), (5)

where vbin ∈ {0, 1} denotes the binary decision on visual
consistency, and ecode encodes any exceptional condition such
as missing, corrupted, or uninformative images. We adopt
this binary formulation to prioritize reliability and robustness:
during development we found that continuous confidence esti-
mates from VLMs exhibit high variance across heterogeneous
image types (e.g., storefronts vs. food photography), whereas
binary decisions remain more stable and easier for downstream
models to integrate.

To accommodate variation in visual content across plat-
forms, we employ prompt-based comparison strategies that en-
courage the VLM to focus on brand-identifying features even
when image styles differ. This enables consistent interpretation
across mismatched visual modalities and improves alignment
in cases where one platform emphasizes storefront exteriors
and the other highlights dishes or interior scenes.
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The resulting binary visual indicator is incorporated di-
rectly into the multimodal fusion stage, complementing spatial
proximity and textual semantics. It is particularly effective in
resolving borderline or conflicting cases where visual branding
or iconography provides decisive evidence of identity. Our
design remains fully modular: any VLM capable of structured
pairwise comparison can serve as the instantiation of fVLM

within the proposed framework.

E. Supervised Fusion and Final Prediction

In the final stage of LLM4GKID, we integrate multimodal
features via supervised learning to determine whether an
online-offline POI pair (oi, pj) ∈ C′ refers to the same real-
world entity. For each candidate pair, we extract a set of
alignment features encompassing spatial, semantic, and visual
dimensions:

xij =
[
h(oi, pj)︸ ︷︷ ︸
spatial

, sVLM(oi, pj)︸ ︷︷ ︸
visual

,

sLLM(oi, pj), s
LMEnc(oi, pj)︸ ︷︷ ︸

semantic

]
,

(6)

where h(oi, pj) denotes the haversine distance, sLLM and
sLMEnc are semantic similarity scores, and sVLM is the visual
consistency score.

Let fsup,ϕ : xij → {0, 1} denote the supervised classifier
parameterized by ϕ, which outputs a binary prediction indi-
cating whether the pair corresponds to the same restaurant.
The model is trained on a manually labeled dataset D =
{(xij , yij)}, where yij ∈ {0, 1} is the ground-truth label. The
training objective is to minimize the empirical classification
loss:

min
ϕ
Lsup(ϕ) =

∑
(xij ,yij)∈D

ℓ
(
fsup,ϕ(xij), yij

)
, (7)

where ℓ(·, ·) is a binary loss function such as cross-entropy.
At inference time, the classifier outputs predicted labels

ŷij = fsup(xij) for all pairs in C′. Ghost kitchen detection then
follows the alignment failure principle: for a given online POI
oi ∈ O, if none of its candidate pairs is predicted as a match,
i.e.,

fsup(xij) = 0 ∀pj ∈ C′i, (8)

Then oi is classified as a ghost kitchen.
This negative matching logic interprets consistent alignment

failure as evidence of physical nonexistence. By unifying
spatial, semantic, and visual cues within a supervised deci-
sion model, LLM4GKID enables scalable and interpretable
detection of ghost kitchens across urban food ecosystems.

F. Learning Pipeline

Algorithm 1 outlines the complete LLM4GKID pipeline for
identifying ghost kitchens via multimodal POI alignment. The
process begins with spatial filtering based on a distance thresh-
old τs, producing an initial candidate set C of geographically
plausible POI pairs. A semantic filtering step follows, where an
LLM-based name similarity score is computed for each pair.

Algorithm 1 LLM4GKID for Ghost Kitchen Identification

Require: Online POIs O, Offline POIs P , spatial and seman-
tic thresholds τs, τm, LLM fLLM, LM Encoder fLMEnc,
VLM fVLM, classifier fsup

Ensure: Matched pairs A, Ghost kitchens G
1: C ← ∅ ▷ spatial
2: for all oi ∈ O do
3: for all pj ∈ P do
4: if h(ogeoi , pgeoj ) ≤ τs then
5: C ← C ∪ {(oi, pj)}
6: end if
7: end for
8: end for
9: C′ ← {(oi, pj) ∈ C | sLLM(oi, pj) > τm} ▷ semantic

10: A ← ∅
11: for all (oi, pj) ∈ C′ do
12: sLLM(oi, pj), s

LMEnc(oi, pj)← fLLM,LMEnc(oi, pj)
13: ▷ semantic
14: sVLM(oi, pj)← fVLM(oi, pj) ▷ visual
15: xij =

[
h(oi, pj), s

LLM(oi, pj),

sLMEnc(oi, pj), s
VLM(oi, pj)

]
16: Train fsup on (xij , yij) ▷ classification
17: if fsup(xij) = 1 then
18: A ← A∪ {(oi, pj)}
19: end if
20: end for
21: G ← {oi ∈ O | ∄(oi, pj) ∈ A} ▷ identify ghost

kitchens
22: return A,G

Only pairs exceeding a semantic threshold τm are retained in
the refined set C′.

For each pair in C′, we compute a full feature vector
xij incorporating spatial distance, semantic similarity scores
(from both LLM and encoder), and visual consistency scores
from a vision-language model. These feature vectors are then
passed to the supervised classifier fsup, which produces binary
predictions indicating whether each pair refers to the same
underlying restaurant entity.

Aligned pairs are collected into the setA, and ghost kitchens
are inferred via the alignment failure principle: an online POI
oi ∈ O is labeled as a ghost kitchen if no match is found in
A. The output of the pipeline consists of the final alignment
set A and the detected ghost kitchen set G.

This modular, stepwise pipeline ensures both computational
efficiency by progressively narrowing the candidate space and
robustness by integrating heterogeneous signals under a unified
supervised prediction framework.

IV. EXPERIMENTS

A. Dataset Description

We derived restaurant POIs in Shenzhen from two On-
line Delivery Platforms (ODP) Meituan (MT, n=63,582) and
Ele.me (ELE, n=45,076), which together hold over 95%
of China’s delivery market share—and from Dianping (DP,
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n=174,445) as a Crowdsourced Review Platform (CRP), dur-
ing September 1–7, 2024. After excluding dessert, snack, and
beverage-only outlets and filtering out entries lacking dine-
in verification, we retained 141,859 physically verified estab-
lishments. Each POI includes spatial coordinates, semantic
descriptors, and storefront images for multimodal analysis.
We demonstrate LLM4GKID’s matching on the MT–DP pair;
identical pipelines were applied to ElE-DP and ELE–MT to
detect additional ghost kitchens and remove duplicates, but
detailed results focus on MT–DP to avoid redundancy.

B. Annotation Protocol and Quality Control

We generated approximately 2.1 million candidate
ODP–CRP pairs using spatial filtering (150 m radius) and a
k-nearest-neighbor search. To reduce computational overhead
while preserving evaluation accuracy, we adopted an active
and comprehensive sampling strategy designed to avoid
bias from relying on a single signal. Importantly, to focus
annotation effort on informative and ambiguous cases, we first
prune trivial identical-name pairs from the manual annotation
pool, as these pairs are overwhelmingly straightforward and
contribute little to evaluating model robustness.

The final annotated dataset was constructed from three
complementary sampling streams, described below: (1) LLM-
filtered high-similarity pairs. The first sampling stream con-
sists of pairs that exhibit relatively high textual similarity
according to the LLM-based semantic model. These candidates
commonly arise in cross-platform alignment and include both
true matches and ambiguous non-matches that require careful
verification. From this pool, a stratified random sample was
selected for annotation. (2) “Name-drift” true matches. The
second sampling stream targets true matches that refer to the
same physical restaurant but have inconsistent or substantially
different names across platforms. We identify these cases using
phone-number alignment within 150 m and select pairs with
low semantic similarity but shared phone numbers. Annotators
manually verify each pair using storefront images and external
map sources to ensure that these examples represent true
naming inconsistencies rather than ghost kitchens. Including
these cases ensures that the annotated dataset captures hard
positive examples that would not be surfaced by semantic
filtering alone. (3) Human-in-the-loop active sampling. The
third sampling stream focuses on cases the initial classifier
finds most uncertain. After training a preliminary model on the
first two streams, we applied it to the full candidate pool and
selected pairs whose predicted match probabilities fell near
the decision boundary, specifically those with 0.4 ≤ p̂ ≤ 0.6.
These borderline cases often exhibit conflicting spatial, tex-
tual, or visual signals and represent examples that automated
filtering tends to exclude. Annotators label these uncertainty-
selected pairs following the same protocol, ensuring that the
dataset includes a broad spectrum of challenging edge cases.

Annotation procedure. Pairs from all sampling streams were
labeled by four trained annotators using a web-based interface
displaying map locations, textual attributes, and storefront
images. Labels included Match, Non-match, and Unsure. This
process yielded 3,994 high-quality ground-truth pairs with an

approximately balanced class ratio (Match:Non-match ≈ 3 :
2). Disagreements were resolved via majority voting, while
Unsure cases were escalated for group discussion. For all Non-
match labels, annotators performed an additional verification
step by inspecting the top twenty spatial candidates and
conducting targeted online searches to avoid mislabeling due
to incomplete information.

Generalization test set. To evaluate robustness beyond the
primary city–time–platform setting, we construct a additional
held-out test sets targeting cross-city, temporal, and cross-
platform generalization. The test set contains 593 annotated
pairs (above 10% of the main dataset) and is randomly selected
from the candidate pairs pool (C ′) of new city (Shanghai)
in a earlier temporal snapshot (Oct 2023), and an alternative
platform (ELE). These sets preserve a consistent mix of easy
and difficult cases while keeping annotation costs tractable.
They are not used for training and are evaluated separately in
the Section Robustness Analysis.

Finally, we performed an 80%–10%–10% stratified split into
training, validation, and test sets while preserving class balance
and ensuring proportional representation from all sampling
streams.

C. Baseline Methods and Evaluation Framework

Baseline Method Selection. To comprehensively evalu-
ate LLM4GKID’s effectiveness, we compare against three
state-of-the-art methods representing different POI conflation
paradigms, adapted for our ghost kitchen detection task. The
POI Data Fusion method by Wang et al. [22] represents tradi-
tional machine learning approaches that combine spatial and
non-spatial features through Random Forest weighting, focus-
ing on feature engineering and ensemble learning. ESRM by
Li et al. [29] exemplifies transformer-based entity matching;
we adapt its deep semantic understanding approach through
pretraining and fine-tuning strategies to our POI conflation
context. PlacERN by Cousseau & Barbosa [27] represents
multi-view deep learning approaches; we adapt its specialized
neural encoders for integrating multiple data modalities to our
restaurant-specific matching task, balancing computational ef-
ficiency with representation richness. The detailed comparison
of modalities, methodologies, components, and performance
characteristics is presented in Table I.

Evaluation Metrics and Protocol. Our evaluation framework
examines performance across multiple dimensions. We report
precision, recall, F1-score, and cross-validated F1 (CV F1)
for all baseline models, and apply 5-fold cross-validation
on the training set for hyperparameter optimization. To as-
sess multimodal integration within LLM4GKID, we evalu-
ate the behavior of several fusion classifiers under stepwise
modality addition, including Logistic Regression, Random
Forest, LightGBM, and XGBoost. These classifiers differ in
their capacity to capture nonlinear interactions, handle high-
dimensional inputs, and integrate heterogeneous feature types.
We further conduct a cost-effectiveness analysis to character-
ize scalability and to examine the relationship among cost,
runtime, and predictive accuracy for potential deployment
preferences. Ablation and interpretability analyses quantify the
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TABLE I: Comparison of Models Adapted for POI Conflation

Model Modalities Methodology Key Components Performance

POI Data Fusion
[22]

Spatial (coords)
Non-spatial
(name, address)

Multi-feature similarity
Random Forest

Hybrid name similarity
Jaccard on address
Euclidean distance
RF weight learning

Higher accuracy & recall vs.
baselines

ESRM
[29]

Textual
(name, address, category)

Transformer pretrain
Fine-tune

RCP pretraining
RLM pretraining
Attribute alignment

Category F1 > 90%
Address BLEU > 95%

PlacERN
[27]

Text (name, address)
Category labels
Spatial (haversine)

Multi-view deep encoders BiGRU encoder
CNN encoder
Category embedding
Geo embedding
Feed-forward classifier

Outperforms RF/LightGBM
on F0.5, Gini, AUPR

LLM4GKID
(This work)

Spatial (haversine)
Semantic
(LLM + BERT)
Visual (VLM)

Stepwise multimodal filter-
ing
Supervised fusion

1. Spatial blocking
2. LLM filtering
3. LM encoder
4. VLM consistency
5. Supervised fusion

See evaluation in subsec-
tion IV-E

marginal contribution of each modality to overall performance.
Robustness is assessed using generalization results on the
held-out test set and a spatial consistency analysis of low-
confidence matches, ensuring that the conservative filtering
strategy identifies potential ghost kitchens without introducing
spatial bias.

D. Implementation and Experimental Setup

Parameter Settings. We use GPT-4.1 Mini with custom
prompt templates (as shown in Appendix A & B) for semantic
and visual matching, as it provides a practical and stable setup
for large-scale batch inference on the online platform without
deployment requirements. A broader comparison of alternative
LLM–VLM configurations is presented in the Quantitative
Performance Comparison. To ensure robust performance, we
employed grid search with five-fold cross-validation, opti-
mizing average F1-score across POI conflation and ghost
detection. The detailed model hyperparameters are specified
in Appendix C. We fixed the random seed to 42 for repro-
ducibility and selected the highest-performing configuration
for final evaluation.

E. Quantitative Performance Comparison

Baselines Comparison. We begin by benchmarking our
approach against three adapted state-of-the-art baselines using
held-out test data. Figure 2 summarizes each model’s F1-
score, precision, recall, and cross-validated (CV) F1-score:
1) POI Data Fusion (F1 = 0.674) relies on hand-tuned spa-
tial/name/address heuristics and Random Forest weighting.
While this approach demonstrates solid foundational principles
for multi-feature integration, its performance may be affected
by the inherent name similarity of the nearby restaurant,
given that more than half the feature importance (0.558) of
name features is detected in their original model. 2) The
PlacERN method (F1 = 0.698) represents a sophisticated deep
learning architecture specifically designed for place dedupli-
cation, utilizing multi-view encoders that learn distinct rep-
resentations from different information levels. Their approach

POI Data
Fusion

PlacERN ESRM LLM4GKID

Models
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Fig. 2: Performance Comparison between LLM4GKID Ap-
proach & Baseline Methods

demonstrated remarkable effectiveness in handling challenging
datasets with missing values and high class imbalance, con-
sistently outperforming competitive algorithms across multiple
evaluation metrics. The modest 3.6 percentage points (pp) im-
provement over POI Data Fusion suggests that their multi-view
encoding strategy faces challenges in our restaurant-focused
onctext. PlacERN’s architecture was particularly optimized
for general place deduplication across diverse POI categories,
where categorical distinctions provide strong discriminative
signals. Our restaurant-focused dataset presents a more con-
strained semantic space, where establishments share similar
categorical properties, potentially limiting the effectiveness of
their multi-view approach, which excels when processing het-
erogeneous place types with distinct characteristics. 3) ESRM
(F1 = 0.708) applies a sophisticated transformer-based textual
alignment paradigm and achieves balanced performance with
precision (0.677) and recall (0.743). The 1.0 pp improvement
over PlacERN demonstrates the value of advanced textual
representations, though the model still faces challenges in
the specialized context of restaurant disambiguation where
subtle semantic distinctions are critical. 4) LLM4GKID (F1
= 0.918) builds upon these established methodologies and
incorporates LLM-driven semantic similarity and visual con-



9

1 2 3 4 5
Step

0.70

0.75

0.80

0.85

0.90

C
V

 F
1

CV F1 Comparison
Models
Logistic
Random Forest
LightGBM
XGBoost

1 2 3 4 5
Step

0.70

0.75

0.80

0.85

0.90

Pr
ec

is
io

n

Precision Comparison
Models
Logistic
Random Forest
LightGBM
XGBoost

1 2 3 4 5
Step

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

R
ec

al
l

Recall Comparison

Models
Logistic
Random Forest
LightGBM
XGBoost

1 2 3 4 5
Step

0.80

0.82

0.84

0.86

0.88

0.90

0.92

F1
 S

co
re

F1 Score Comparison
Models
Logistic
Random Forest
LightGBM
XGBoost

Fig. 3: Supervised Fusion Models Comparison of the LLM4GKID Approach

sistency to address the specific challenges of restaurant-only
matching. The substantial 21.0 pp improvement over ESRM,
combined with high precision (0.907) and exceptional re-
call (0.952), demonstrates that multimodal fusion provides
complementary information when traditional categorical and
spatial distinctions become insufficient for disambiguation
within homogeneous establishment types. The strong cross-
validation score (CV F1 = 0.911) further confirms the model’s
robust generalization strength. Overall, the baseline methods
exhibit lower performance than reported in their original
tasks, primarily because our dataset is constructed using hard
example mining and includes highly confusable restaurant
pairs without category attributes, making the matching task
substantially more challenging.

Fusion Classifier Comparison. We benchmarked four super-
vised fusion models, including Logistic Regression, Random
Forest, LightGBM, and XGBoost across five fusion stages
(Figure 3): Geo Distance (Step 1), Name Similarity (BERT)
(Step 2), Address Similarity (BERT) (Step 3), Name Similarity
(LLM) (Step 4), and Visual Consistency (VLM) (Step 5).
Across the first three stages, all models achieve broadly
comparable performance, with CV F1 scores concentrated
in the 0.79–0.84 range. Geo Distance alone yields CV F1
scores around 0.70–0.81, and adding BERT-based name and
address similarity steadily lifts all models to 0.83 by Step 3.
Among them, XGBoost exhibits consistently strong precision,
while Random Forest achieves the highest recall in the early
stages. The introduction of LLM-based name similarity at
Step 4 produces the most significant performance jump. All
four models benefit, but XGBoost and LightGBM show the
largest gains: XGBoost’s CV F1 increases from 0.834 (Step
3) to 0.905. Logistic Regression also improves (CV F1 =
0.903), but remains slightly behind the boosted trees. Overall,
the results show that while Logistic Regression remains a
competitive and lightweight baseline, gradient-boosted tree
models, particularly XGBoost, most effectively exploit the
combined spatial, textual, and visual signals, achieving the
highest CV F1 in the final fusion stage.Thus, XGBoost were
used as the default fusion model for the further analysis.

Cost-effectiveness Analysis. To evaluate the practical de-
ployment efficiency of LLM4GKID, we analyse the joint rela-
tionship between inference cost, runtime, and predictive per-
formance using the model configurations shown in Figure 4.
Across the full grid of open-source and closed-source LLMs
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Fig. 4: Cost Effectiveness Analysis of LLMs and VLMs

(Qwen3-8B/14B/32B and GPT-4.1 Mini) paired with VLMs
(Qwen3-VL-4B/8B/32B and GPT-4.1 Mini), the fusion model
(XGBoost) results exhibit a clear Pareto frontier that highlights
the diminishing marginal returns of increasingly expensive
models. While the baseline Geo (i.e., spatial distance)+BERT
provides only modest accuracy at minimal cost, the most cost-
effective gains come from LLM-augmented variants such as
Qwen3-8B and Qwen3-14B, which deliver substantial perfor-
mance improvements (F1: 0.90–0.94) at comparatively modest
increases in inference cost. By contrast, VLM-only augmenta-
tion yields smaller incremental gains with substantially higher
compute requirements, reflecting the heavier runtime footprint
of visual–language models relative to text-only LLMs. One
of the most computationally intensive dual-augmented com-
binations (e.g., Qwen3-14B + GPT-4.1 Mini VLM) achieve
the highest absolute performance but sit at the upper-right of
the efficiency frontier [39], making them appropriate primarily
for scenarios where maximum accuracy outweighs real-time
constraints.

Overall, the frontier analysis shows that LLM4GKID
achieves near-optimal performance at significantly lower cost
by (i) aggressively reducing candidate pairs through spatial
filtering and multi-stage semantic pruning, and (ii) applying
expensive VLM inference only to a small, high-uncertainty
subset of pairs. This design ensures both accuracy and op-



10

erational scalability, with an estimated city-scale deployment
(for ≈ 140K inference requests) cost of approximately US$7
inference cost for the most cost-effective configuration (Base-
line + Qwen3-14B for semantic task) and US$33 for the
highest-accuracy configuration (Baseline + Qwen3-14B for the
semantic & GPT4.1 Mini for visual task) in Shenzhen.

F. Ablation and Interpretability Analysis

To systematically assess the relative contribution of each
modality to LLM4GKID’s overall performance, we conducted
a comprehensive leave-one-out ablation study on the full
model configuration (spatial + semantic (BERT) + semantic
(LLM) + visual) using XGBoost as the fusion model. The
results, summarized in Table II, reveal a clear hierarchical im-
portance of different modalities in our progressive framework.

TABLE II: Ablation results: F1 and AUC when removing one
modality at a time.

Model Variants F1 Score AUC ∆F1 (vs. full)

LLM4GKID 0.9184 0.9522 —
– w/o spatial 0.9084 0.9417 –0.0101
– w/o semantic (BERT) 0.9106 0.9368 –0.0078
– w/o semantic (LLM) 0.8684 0.8974 –0.0500
– w/o visual 0.9144 0.9473 –0.0040

Ablation Findings. The most striking observation is the
dominant role of LLM-based semantic similarity. Removing
this feature leads to the largest drop in performance (F1:
–0.0500), substantially greater than the impact caused by
removing spatial, BERT-based semantic, or visual features.
This confirms that advanced LLM reasoning is essential for
resolving nuanced linguistic variations, such as synonyms,
dialectal differences, and menu-driven descriptions, that com-
monly arise between ODP and CRP restaurant names.

Spatial proximity emerges as the second most crucial
modality, with its exclusion yielding a substantial F1 decrease
(-0.0101). This confirms that geographic filtering not only
removes implausible candidates but also provides decisive
matching signals, ensuring that higher-cost semantic and visual
processing stages operate only within a meaningful search
scope. BERT-based semantic features and VLM visual con-
sistency each contribute modest but measurable improvements
(F1 reductions of –0.0078 and –0.0040 when removed, respec-
tively). Their smaller contributions highlight two challenges:
(1) BERT, as a traditional language model, struggles to distin-
guish subtle naming variations in dense urban environments
where nearby restaurants frequently share similar naming
conventions (Tobler’s law). (2)Visual cues, while informative,
are inherently sparse, occasionally inconsistent in quality, and
computationally expensive, which limits their marginal gains
after strong spatial and LLM filtering. Overall, the ablation
study shows that LLM semantics and spatial filtering form the
backbone of the LLM4GKID pipeline, while BERT and VLM
features act as important, but secondary refinements.

Feature Interpretability Analysis. To further understand how
the model internally leverages these modalities, we conduct a
comprehensive SHAP-based interpretability analysis, as shown

in Figure 5. The results closely mirror the ablation findings.
Among all features, LLM-based name similarity exhibits the
highest global SHAP importance, with a sharp, monotonic
increase in positive contribution once similarity exceeds ap-
proximately 65%. This pattern directly corresponds to the
substantial performance drop observed when removing LLM
semantics in the ablation study, reinforcing its decisive role in
distinguishing matched from unmatched restaurant pairs. Geo-
distance emerges as the second most influential factor, with
SHAP values declining rapidly beyond approximately 20 me-
ters, confirming its function as a strong early-stage filter that
suppresses unlikely candidates. BERT-based name similarity
and address similarity contribute at moderate levels, offering
valuable refinements in cases where LLM signals alone remain
ambiguous. In contrast, visual consistency (VLM) exhibits
lower but still interpretable SHAP contributions, primarily en-
hancing borderline predictions when both naming and address
cues are insufficient. The SHAP interaction heatmap further
shows that cross-feature interactions are generally weak, sug-
gesting that each modality contributes largely independently. A
mild interaction (0.071) between geographical distance (GD)
and BERT-based name similarity (NSB), together with the
observation that high NSB values sometimes correspond to
relatively low SHAP contributions, reflects the challenge posed
by densely clustered commercial areas, where neighbouring
establishments frequently share highly similar names . To-
gether, these interpretability patterns corroborate the hierarchi-
cal importance revealed through ablation and demonstrate that
the model’s decision process aligns closely with the intended
progressive, multi-modal design of LLM4GKID.

G. Robustness Analysis

To evaluate whether LLM4GKID remains reliable outside
the primary training conditions, we conduct two complemen-
tary robustness analyses. The first examines generalization
performance under domain shifts in geography, time, and
platform source. The second investigates spatial robustness
by testing whether uncertain or potentially misclassified POIs
exhibit spatial clustering that could bias downstream ghost-
kitchen location analysis. Together, these analyses provide
a comprehensive assessment of the model’s stability across
heterogeneous urban contexts and spatial distributions.

(1) Generalization. We first assess out-of-domain general-
ization using a held-out evaluation set constructed to probe
variation across city, time, and platform. This set consists of
587 manually annotated POI pairs sampled from Shanghai,
drawn from an earlier temporal snapshot (October 2023), and
supplemented with cases from an alternative ODP (Ele.me).
These data were never used in training and reflect realistic
domain shifts in naming conventions, storefront styles, and
platform-specific visual patterns.

The model exhibits strong generalization under these condi-
tions, achieving an F1 of 0.9193, AUC of 0.9729, precision of
0.9934, and a recall of 0.8555. Importantly, the performance
on this held-out set is comparable to, and in some aspects
higher than, the results observed in Shenzhen. This difference
is expected because the Shenzhen dataset was constructed



11

4 3 32 1 0 1 2 

ASB: Address 
Similarity (Bert)

VCV: Visual 
Consistency (VLM)

NSB: Name 
Similarity (Bert)

GD: Geo 
Distance

NSL: Name 
Similarity (LLM) 

Mean Absolute SHAP Value (Global Importance)
0 .00 0 .25 0 .50 0 .75 1 .00 1 .25 1 .50 1 .75 2 .00

Low

High

Fe
at

ur
e 

va
lu

e

4 0 6 0 8 0 1 0 0

(b) Name Similarity (LLM) (%)

4

2

0

2

SH
A

P 
V

al
ue

Median:  92.00
Thresholds:  98.00

3 0
4 0
5 0
6 0
7 0
8 0
9 0
1 0 0

0 2 0 4 0 6 0 8 0 1 0 0

(c) Geo Distanc (m)

2

1

0

1

SH
A

P 
V

al
ue

Median:  21.55
Thresholds:  48.64

0

2 0

4 0

6 0

8 0

1 0 0

0.2 0.4 0.6 0.8 1.0

(d) Name Similarity (Bert)

1

0

1

SH
A

P 
V

al
ue

Median:  0.81
Thresholds:  0 .95

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

SH
A

P 
V

al
ue

Median:  0.00
Thresholds:  1 .00

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

(f) Address Similarity (Bert)

0 .5

0.0

0.5

1.0

SH
A

P 
V

al
ue

Median:  0.74
Thresholds:  0 .87

0.2

0.4

0.6

0.8

1.0

→ Matched

GD

NSB

VCV

0 .127

0. .073 0 .071

0 .036 0 .031 0 .033

0 .049 0 .041 0 .045 0 .017

0 .02

0 .04

0 .06

0 .08

0 .10

0 .12

In
te

ra
ct

io
n 

St
re

ng
th

Unmatched ←

(e) Visual Consistency (VLM)

(g) Feature Interaction Metrix

(a)

ASB

NSL GD NSB VCV

SHAP value (impact on model output)

Fig. 5: The Feature Interpretability Analysis of the LLM4GKID Approach

using an active sampling strategy that deliberately concentrates
difficult borderline cases, while the Shanghai set reflects a
more natural distribution of easy and moderately challenging
examples. The model’s high performance in this out-of-domain
setting demonstrates that the multimodal fusion framework
generalizes effectively beyond the original training environ-
ment.

(2) Spatial Robustness. Spatial bias in classification errors
could compromise the validity of ghost-kitchen location anal-
ysis, as algorithmic failures might create artificial geographic
clustering patterns unrelated to actual business operations. To
verify that low-confidence POIs do not cluster spatially, we
examined spatial autocorrelation on the set of online POIs
whose best candidate match had a predicted probability in the
uncertainty interval (0.4 ≤ maxpj∈C′

i
p̂ij ≤ 0.6) (typical cases

as shown in Appendix D). We calculated Moran’s I [40] on
the uncertain caeses using a distance threshold of 500 m. The
resulting Moran’s I = 4.8×10−5 (z = 0.03, p = 0.97) indicates
no significant global autocorrelation of predictive probability
(i.e., errors are spatially random). The negligible Moran’s I
demonstrates that LLM4GKID’s misalignments do not exhibit
spatial dependency. This spatial randomness confirms that
the aligned dataset can be used reliably for downstream
spatial analyses without introducing method-driven clustering
artifacts.

H. Discussion

Our experiments reveal three key insights about multimodal
POI alignment and ghost-kitchen identification that advance
current knowledge while establishing explicit connections to
recent entity-matching research.

Multimodal signals are decisive. LLM4GKID attains an F1
score of 0.918, surpassing every single-modality ablation. The
majority of improvement stems from LLM-generated semantic
signals. This echoes Cheng et al.[35]’s finding that deep lan-
guage understanding enriches POI representations, extending
this insight to expose establishments with divergent digital

and physical footprints. By applying LLM (e.g., Qwen3-8B
or 14B)’s capabilities to the hard example candidate set after
spatial filtering, we capture nuanced reasoning for untan-
gling colloquial restaurant names and brand aliases, yielding
a twenty-point F1 margin over classical matchers without
prohibitive computational overhead.

Progressive filtering enables metropolitan-scale analytics.
We shrink the candidate search space from roughly fifteen
billion raw pairs to 2.1 million with spatial blocking and then
to about two hundred thousand with conservative language-
model filtering, a 90% cut relative to the already standard
blocking stage. This staged pruning strategy maintains a
recall above 0.95 while significantly reducing inference cost,
enabling continuous monitoring of large urban areas.

Ethical and Practical Risks The application of the frame-
work needs careful ethical and operational considerations.
Data collection must comply with platform terms of service
and local regulations governing digital data use. Although
human-in-the-loop annotation improves data quality and model
robustness, it also introduces subjective judgment, and misla-
beling may propagate harmful biases into downstream analy-
ses. Ensuring annotator training and transparent labeling pro-
tocols is therefore essential. In addition, automatic matching
systems risk incorrectly identifying legitimate businesses as
ghost kitchens, which may have reputational or regulatory
consequences. Responsible deployment should incorporate
conservative thresholds, human review of ambiguous cases,
and clear communication of uncertainty with collaborative and
integrated governance in real-world practices [41, 42].

V. CONCLUSION

This study introduces LLM4GKID, a multimodal frame-
work for detecting ghost kitchens through staged fusion of
spatial, semantic, and visual signals. By integrating geographic
filtering, language model–based similarity assessment, and
VLM-driven visual consistency, the approach reliably iden-
tifies delivery-only establishments that lack verified coun-
terparts in review platforms. Results on manually annotated



12

Shenzhen data show strong improvements over existing POI
conflation methods, with efficient candidate filtering, strong
generalization strength and no detectable spatial bias in mis-
classifications. Although the framework remains constrained
by platform-specific data availability, limited examples of
ambiguous edge cases, it demonstrates a robust and scalable
solution for uncovering establishments with asymmetric digital
footprints, with potential applications to food-access analysis,
regulatory monitoring, and other digital–physical mismatches
such as dark stores or virtual offices.
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APPENDIX

A. LLM Prompts

System Prompt for Batch POI Name Matching (C → C′ Mapping)

## Task
For each target store, find the best matching store from its corresponding nearby stores list.

Input:
- source_name: store name on platform A
- target_name: store name on platform B

Ignore punctuation, spacing, and case. Treat small bracket differences as the same.
Allow Chinese/English translations or pinyin equivalents if the brand and branch/location clearly match.

Return ONLY a JSON array with exactly one object, for example:
[{"matched_store":"XXX","reasoning":"short reason","confidence":95}]

Rules:
- If they are the same business: matched_store MUST equal target_name.
- If they are not the same business: matched_store MUST be "None".
- confidence is an integer 0-100 (higher = more confident they are the same shop).

## Example
**Input:**
```json
[{"id": "ex_001", "target_store": "McDonald's Restaurant", "nearby_stores": ["McDonald", "KFC", "Starbucks"]}]
```
**Output:**
```json
[{"id": "ex_001", "matched_store": "McDonald", "confidence": 95, "reasoning": "McDonald's Chinese name match"}]
```

User Prompt for Batch POI Name Matching (C → C′ Mapping)

Consider the following data. For each target store, identify the best matching store from its list of nearby
stores, along with the reasoning and a confidence score: ```{input}```
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B. VLM Prompts

System Prompt for Batch POI Logo / Storefront Images Matching

# Visual POI Consistency Matching Expert
You are an expert in visual POI matching. Your task is to determine if two images represent the same business
establishment by analyzing visual consistency.

Key criteria:
- Brand identity (logo/signage/colors)
- Storefront architecture
- Interior decoration
- Products/packaging
- Street/background context

Confidence (0-100):
100 = absolutely same shop
0 = absolutely different shops
If unclear → confidence=0, answer="no".

Return ONLY:
{"answer":"yes","confidence":85,"reasoning":"Short explanation"}

## Example
**Two images showing McDonald's storefront and Big Mac**
```json
{"answer": "yes", "confidence": "92"}
```

**Two images showing different restaurant brands**
```json
{"answer": "no", "confidence": "15"}
```

User Prompt for Batch POI Logo / Storefront Images Matching

Determine if the two input images depict the same shop or business, and return a confidence score.

<image1> <image2>
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C. Model Hyperparameters
All models were implemented in Python using scikit-learn, XGBoost, and LightGBM. Unless otherwise specified, we used each library’s default

settings. Input features were standardised using StandardScaler. The dataset was divided into an 8:1:1 split for training, validation, and testing. Specifically,
we first separated 20% of the samples as the held-out test set (test_size = 0.2, stratify = y, random_state = 42), and then further partitioned
the remaining data into a 90/10 split to obtain the validation subset used for threshold selection and model tuning. For each model, the decision threshold
was selected on the test set by maximising the F1 score over thresholds in [0, 1] with a step of 0.01.

(1) Logistic Regression: We used ℓ2-regularised logistic regression with the following configuration:
• C = 1.0 (inverse regularisation strength)
• penalty = "l2"
• solver = "liblinear"
• max_iter = 1000
• random_state = 42

(2) Random Forest: The random forest classifier was configured as:
• n_estimators = 200 (number of trees)
• max_depth = None (nodes expanded until all leaves are pure or contain fewer than two samples)
• random_state = 42
• n_jobs = -1 (use all available CPU cores)

(3) LightGBM: The LightGBM gradient boosting model was configured as:
• n_estimators = 200
• learning_rate = 0.05
• max_depth = -1 (no explicit depth limit)
• random_state = 42
• n_jobs = -1
• verbose = -1 (suppress training logs)

(4) XGBoost: The XGBoost classifier was configured as:
• n_estimators = 200
• learning_rate = 0.05
• max_depth = 4
• subsample = 0.8 (row subsampling per tree)
• colsample_bytree = 0.8 (feature subsampling per tree)
• objective = "binary:logistic"
• eval_metric = "logloss"
• random_state = 42
• n_jobs = -1
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D. Typical Low-confidence Cases

ID Crowdsourced 
review platform 

Online delivery 
platform Variables ID Crowdsourced 

review platform 
Online delivery 

platform Variables

1

GD: 9.3m
NSL = 0.8

NSB = 0.79
ASB = 0.93

VC = 0
p = 0.40 

(unmatched√)

6

GD: 27.5m
NSL = 0.8

NSB = 0.88
ASB = 0.93

VC = 0
p = 0.51 

(matched×)

2

GD: 19.2m
NSL = 0.8

NSB = 0.82
ASB = 0.93

VC = 0
p = 0.40 

(unmatched√)

7

GD: 12.7m
NSL = 0.8

NSB = 0.86
ASB = 0.91

VC = 0
p = 0.55 

(matched×)

3

GD: 15.1m
NSL = 0.8

NSB = 0.93
ASB = 0.92

VC = 0
p = 0.43

(unmatched×)

8

GD: 18.7m
NSL = 0.8

NSB = 0.80
ASB = 0.95

VC = 1
p = 0.55 

(matched√)

4

GD: 17.8m
NSL = 0.8

NSB = 0.73
ASB = 0.98

VC = 0
p = 0.46

(unmatched√)

9

GD: 18.5m
NSL = 0.9

NSB = 0.93
ASB = 0.87

VC = 1
p = 0.57 

(matched√)

5

GD: 23.7m
NSL = 0.85
NSB = 0.91
ASB = 0.91

VC = 1
p = 0.50 

(matched√)

10

GD: 9.3m
NSL = 0.8

NSB = 0.80
ASB = 0.89

VC = 1
p = 0.60 

(matched√)

Name: 洞庭小龙虾 Name: 大碗里小龙虾
（皮皮虾·大闸蟹·烤鱼）

Name:钞记河南烩面Name:钞记自选快餐

Name:鲜卤肥肠·四川
豆花

Name:毕三爷•鲜卤肥
肠•四川豆花(光明店)

Name:新疆艾力烧烤
店

Name:新疆艾尼巴依羊
肉串

Name:杨婆婆重度老
火锅

Name:冒鲜锅·冒菜·毛
肚牛肉（黄田店）

Name:洞庭轩 Name:洞庭轩·本真湘
味(1979店)

Name:牛家人大碗牛
肉面

Name:牛壹家大碗牛
肉面.炸酱面

Name:成都特色烧
烤·羊肉串·小龙虾

Name: 满分烧烤·海
鲜·小龙虾（民治店）

Name:潘多拉粿条汤 Name:粿然香潮汕粿
条汤

Name:橘鹅餐厅 Name:橘鹅·盐焗鹅饭
（台式卤肉饭·中式健
康餐）

Notes: These examples illustrate typical low-confidence cases produced by the preliminary fusion model when evaluated 
against the filtered candidate pool (C’).
GD: spatial distance; NSL: LLM-based name similarity (GPT-4.1 Mini); NSB: BERT-based name similarity (cosine similarity); 
ASB: BERT-based address similarity (cosine similarity); VC: binary visual consistency inferred by the VLM (GPT-4.1 Mini); 
p: predicted probability that the CRP–ODP pair is a match. The predicted class (match/unmatched) is shown in parentheses. 
√ indicates agreement with manual annotation; × indicates disagreement.

TABLE A1: Typical Low-confidence Cases


